
Lightweight & Secure Industrial IoT Communications
via the MQ Telemetry Transport Protocol

Sotirios Katsikeas†, Konstantinos Fysarakis‡, Andreas Miaoudakis‡, Amaury Van Bemten◊, Ioannis Askoxylakis‡,
Ioannis Papaefstathiou† and Anargyros Plemenos‡

†Technical University of Crete, Greece, ‡Foundation for Research and Technology – Hellas, Greece ◊Technical University of
Munich, Germany

Abstract—Massive advancements in computing and
communication technologies have enabled the ubiquitous presence
of interconnected computing devices in all aspects of modern life,
forming what is typically referred to as the “Internet of Things”.
These major changes could not leave the industrial environment
unaffected, with “smart” industrial deployments gradually
becoming a reality; a trend that is often referred to as the 4th
industrial revolution or Industry 4.0. Nevertheless, the direct
interaction of the smart devices with the physical world and their
resource constraints, along with the strict performance, security,
and reliability requirements of industrial infrastructures,
necessitate the adoption of lightweight as well as secure
communication mechanisms. Motivated by the above, this paper
highlights the Message Queue Telemetry Transport (MQTT) as a
lightweight protocol suitable for the industrial domain, presenting
a comprehensive evaluation of different security mechanisms that
could be used to protect the MQTT-enabled interactions on a real
testbed of wireless sensor motes. Moreover, the applicability of the
proposed solutions is assessed in the context of a real industrial
application, analyzing the network characteristics and
requirements of an actual, operating wind park, as a
representative use case of industrial networks.

Keywords—Industrial Internet of Things, IIoT, MQTT,
information security, confidentiality, authentication, secure
communication, Wireless Sensor Networks, WSN, Industrial
Networks

I. INTRODUCTION
Internet of Things (IoT) is a technological concept aiming at

connecting all “smart things” to the Internet [1]. A recent
research by Cisco estimated that the IoT will consist of almost
50 billion objects by 2020 [2]. IoT has the potential to
significantly enhance everyday lives, as it could be the enabler
of anything from smart home and industrial automation to fully
autonomous systems. The integration of the IoT into the
industrial value chain, is referred to as “Industry 4.0”, or
“Industrie 4.0”, from the German government initiative to
promote the computerization of manufacturing that introduced
the term [3]. The Industrial IoT (IIoT) is becoming a driver for
innovation, promising reductions in capital expenditures
(CAPEX) and operating expenses (OPEX), monitoring and
optimizing several processes, regardless of their complexity,
enabling innovative business models [4].

Nevertheless, this new reality also introduces significant
challenges in terms of implementing dynamic and secure
discovery of resource-constrained devices and their resources
[5]. Since all these devices will be connected to the Internet,
security seems to be the one of the biggest concern of IoT [6]
[7]. While some security aspects have already been solved on
modern PCs and mobile devices, this is not the case for the
devices that comprise the IIoT. Embedded devices, in their

majority, have constrained resources that could not withstand the
security implementations used on more powerful devices such
as smartphones and tablets. A vital part of the IoT ecosystem are
the wireless sensing nodes that form Wireless Sensor Networks
(WSNs) and cooperatively sense and may control (through
actuators), the surrounding environment, thus enabling the
interaction between the cyber and the physical world [8]. In this
class of devices widely-used protocols such as IPsec [9] protocol
cannot be used because of their severe resource constraints
motivating researchers to present lightweight variants [10][11].

Closely linked to the security concerns are interoperability
issues, as the current IoT landscape is one of a fragmented
market, with lack of compatibility provisions. Various proposed
“IoT protocols” aim to address such issues, whereas
standardization initiatives try to guarantee interoperability,
through the wide and structured deployment of the proposed
mechanisms. Message Queue Telemetry Transport (MQTT)
[12] is one such machine-to-machine (M2M)/"IIoT”
connectivity protocol, recently standardized by OASIS. It was
designed as an extremely lightweight publish/subscribe
messaging transport, for small sensors and mobile devices,
optimized for high-latency and/or unreliable networks. These
characteristics were important in the protocol’s initial use case
of monitoring oil pipelines on remote locations, where
communications were at a premium. The same characteristics
appear in the IoT era, justifying the revived interest in the
protocol, leading to its recent standardization.

Motivated by the above, this work presents a secure
deployment of MQTT on Wireless Sensor Nodes, emulating an
IIoT deployment, evaluating the performance of various security
options on a real-world testbed. Moreover, the results of this
evaluation are assessed in the context of an actual industrial
network, highlighting the most viable options in the context of a
real industrial application. Said assessment is based on a trace
analysis conducted in an operating wind park’s network (in
Brande, Denmark); a representative use case of industrial
networks, studied in the context of the European project
VirtuWind [13].

The rest of paper is organized as follows: Section 2 presents
the background in IoT protocols, then focusing on MQTT and
the security mechanisms that could be employed to secure its
deployments. Section 3 provides details on the key building
blocks of the setup used to assess the various security
mechanisms in the context of having a secure MQTT-enabled
WSN environment, while Section 4 presents the method and
results of the evaluation on said testbed. Finally, Section 5
includes the concluding remarks and pointers to future work.

II. TECHNICAL BACKGROUND

A. IoT Communication Protocols
Even though IoT research efforts in terms of standardization

and interoperability are still under way, various protocols are
already available. Focusing on open source protocols, four
approaches seem to have gained the most attention, both in
research, but also in actual implementations for end users:

• the MQTT protocol, mentioned above
• the Devices Profile for Web Services (DPWS [14], also

an OASIS standard); a service-oriented approach on
embedded and sensor devices with limited resources

• the Constrained Application Protocol (CoAP [15], an
IETF standard); a specialized web transfer protocol for
use with constrained nodes and constrained networks

• the Extensible Messaging and Presence Protocol
(XMPP [16], also an IETF standard); a communication
protocol for message-oriented middleware.

A characteristics comparison of the above protocols is
presented in TABLE I. Many theoretical and feature-by-feature
comparisons of ΙοΤ protocols are available in the literature,
whereas some power efficiency and performance evaluations of
real implementations can be found as well. A high-level survey
of IoT protocols can be found in [17], although DPWS is not
included. Another comparison between CoAP and MQTT, in the
context of a smartphone-based application, can be found in [18].
Additionally, a direct comparison of DPWS, CoAP and MQTT
can be found in [19]. In [20] a comparison of, MQTT and CoAP,
assessing protocols’ behavior in changing network conditions is
available. Finally, in [21] , another lab-based comparison of
CoAP, MQTT and OPC-UA, in the context of communications
over cellular networks is presented. However, a comprehensive
performance and power evaluation of different security
mechanisms on MQTT-enabled wireless motes is missing from
the literature, to the best of our knowledge.

MQTT offers some significant advantages that make it
standout for IIoT applications. The Quality of Service (QoS)
options of MQTT are unique amongst IoT protocols; an
important feature on unreliable networks transferring critical
information. On top of that, it is TCP based on instead of the
unreliable UDP transport protocol. Moreover, its message sizes
are very small, with a fixed header overhead of just 4 bytes,
second only to CoAP (which has 2 bytes of fixed header size)
whereas XMPP and DPWS messages follow XML structures
and incur significant overheads to message sizes. Finally,
MQTT is the second most popular IoT messaging protocol used
today by IoT, according to [22], (only preceded by HTTP, which
is not applicable to resource-constrained devices nor lightweight
communications that are the focus of this work). A disadvantage
of MQTT is that does not have discovery capabilities. This is not
a problem in the context of wireless sensors, because most of the
IIoT scenarios assume that all the nodes’ properties are already
known or easily discoverable from the respective edge router.
The other drawback of MQTT is that it is not a synchronous
communication protocol. This is of no significance in the
context of IIoT sensors which periodically report sensed data at
a gateway, as there is no special need for synchronous
communications between these nodes, but may be an issue when

communicating with IIoT actuators in some scenarios (which
can be overcome using more complex interactions; e.g.
publishing to a topic that is relayed to the subscribed actuators,
which in turn forces them to trigger an action).

TABLE I. FEATURE COMPARISON OF THE MAIN IOT PROTOCOLS

 DPWS XMPP COAP MQTT

Version 1.1, OASIS RFC 6120,
IETF

RFC 7252,
IETF

3.1.1, OASIS,
ISO/IEC

20922/2016
Protocol

Type
Service

Oriented
Message
Oriented

Resource
Oriented

Message
Oriented

Transport TCP & UDP TCP
UDP
(TCP

planned)
TCP

Synchronous
Yes

(Service
Invocation)

Near-real time

Yes
(Request/resp

onse, via
HTTP)

No

Asynchronous

Publish/Subsc
ribe to Service

- WS-
Eventing

Publish/Subsc
ribe

Observe
Resource -
RFC 7641

Publish/Subsc
ribe to Topic

Discovery WS-
Discovery XEP-0030 RFC 5785 /

RFC 6990 No

QoS Not integrated Not integrated Elementary
support Yes (3 modes)

Security

Payload
encryption,

WS-Security,
TLS, IPSec,

802.15.4

SASL,
TLS,

Non-native
end-to-end
encryption

Payload
encryption,

DTLS,
IPSec,

802.15.4

Payload
encryption,

TLS,
IPSec,

802.15.4

B. The MQTT Protocol
MQTT is an IoT connectivity protocol that runs on top of the

TCP protocol. It was developed by IBM for lightweight M2M
communications. In 2014, the MQTT version 3.1.1 was also
approved [23] as an OASIS standard, while it is also
standardized as ISO/IEC 20922 [24]. It is a message-oriented
protocol, that implements a publish/subscribe interaction model
where the client devices do not need to impulsively request for
updates; thus, reducing the drain of nodes resources, and making
it optimal for use on high-latency or/and unreliable networks.
The MQTT protocol follows the server/client schema with the
server referred to as the broker. The clients do not communicate
directly with each other and all the messages travel through the
broker. Every message has a topic and each client can subscribe
to various topics. Topics are organized in a hierarchical manner
(called topic levels), with the form of file paths such as in a
computer’s file system; e.g. “home/bedroom/light/status”. The
broker receives the publish messages from a client and is then
responsible for relaying them to every other client that is
subscribed to this topic. It is easy to understand that MQTT was
designed for one-to-many and many-to-many asynchronous
communications. Provided that there is a pre-defined
relationship between participating nodes, there is no need for
discovery or content negotiation mechanisms in the protocol.
MQTT focuses on reliable messaging, therefore it includes
message buffers and Quality of Service (QoS) levels controlled
by the broker: i) level 0 – at most once (or better described as
“fire and forget”), ii) level 1 – at least once (or “deliver at least
once”) and iii) level 2 – exactly once (or “deliver exactly once”).
The assurance of the QoS levels greater than zero is achieved

with the use of ACK (acknowledge) packets between the
publisher and the broker.

Despite being only recently standardized, researchers have
already studied MQTT in a variety of domains, including
eHealth applications [25], WSNs and smart grid [26], smart
homes [27] and also mobile IoT contexts [28], among others.

C. MQTT Security
MQTT features various security options in terms

authentication, authorization and data confidentiality. For
authentication, it provides a simple authentication scheme
through username and password fields in the connection
initiation packet that a client can use to connect the broker,
although authenticating credentials are sent in plaintext and
some form of encryption should be used. An additional
authentication scheme is by the use of the unique client identifier
that every MQTT client registers at the broker at connection
time. The client id can be up to 65535 characters and it is
commonly given the value of the MAC address of the device or
it’s serial number.

Authorization in MQTT can be achieved using an Access
Control List (ACL) on the broker side. The ACL contains
permissions for users or system processes to grant access to
objects, as well the allowed operations on given objects. MQTT
ACL contains all the pairs of usernames and passwords and the
topics a client have publish and/or subscribe access. Enhanced
authorization features can be implemented on the broker with
the form of plugins, or with the form of an extra web service.
More sophisticated access control schemes can also be
integrated into MQTT [29][30].

Regarding the confidentiality of MQTT messages, this can
be achieved at the Application layer via the use of payload
encryption. For this encryption, any of the available encryption
or authenticated encryption algorithms can be used, provided
that there is support for the target devices. Furthermore,
encryption can be implemented either as end-to-end (encrypted
on the publisher’s device and is decrypted on every subscriber
that has the right key) or just client-to-broker. In the former case,
the broker may have no knowledge of the decryption key, and
thus no access to the payload’s content (i.e. messages can be sent
even over untrusted brokers). On the second case, the payload of
the message is only encrypted between a node and the broker.
This approach requires a custom-developed broker plugin that
will decrypt the encrypted data on the broker side, and could be
used in scenarios where only part of the MQTT deployment is
to be protected (e.g. subscribers are already connected with a
secure connection to the broker, thus we only need to protect the
publishing nodes).

Nevertheless, security mechanisms could also be adopted at
lower layers. For example, a reliable way to achieve secure
communication on the Transport layer is TLS (for TCP) or
DTLS (for UDP). As MQTT uses TCP, the focus is on the
former, but TLS is not applicable for devices with severe
resource limitations, such as the wireless sensor nodes that are
the focus of this work.

Moving to a lower layer of the network stack, a common way
to secure communications is the use of link layer encryption.
Link layer encryption can be achieved with the use of many

different encryption or authenticated encryption algorithms such
as AES-CBC-MAC, AES-CTR, or AES-CCM*. This kind of
security has some strong advantages such as greater efficiency
considering the hardware acceleration support found on many
modern radio chips.

In the context of this work, we will focus on the two most
viable security approaches for MQTT on WSN deployments,
namely how different variants of payload encryption compare to
the use of encryption at the link layer.

III. TESTBED SETUP
This section provides details on the building blocks used to

produce an MQTT-enabled WSN testbed for comparing the
various security options that could be used alongside said
protocol.

A. Platforms
1) WSN Mote

The IoT features a variety of heterogeneous platforms,
ranging from ultra-low power and limited resources motes (such
as Zolertia Z1 and ReMote, Wismote, Skymote), to medium
power platforms (such as Arduino), or even more powerful
computing devices (such as the Raspberry Pi). For the WSN
testbed in this work, the Zolertia Z1 [31] was chosen; a
development platform that builds upon the ultra-low power 16bit
16 MHz MSP430 RISC MCU [32]. The communication is
managed by the Texas Instruments CC2420 radio transceiver
which operates in the 2.4 GHz band. It is equipped with 8kB of
RAM and a 92kB Flash memory, although only 56kB are usable
without using the proper configuration. It also has a very well-
established support on many open source operating systems.
Finally, the board can be powered from either a battery or the
USB connection.

2) Lightweight Operating System for the IoT
Contiki OS [33] is an open source and community supported

operating system designed for use in IoT, offering low memory
footprint, power management and soft real-time [34]. Built into
Contiki the Cooja Network Simulator, is a simulation
environment that allows developers simulate applications
running in large-scale networks and on fully emulated devices.
In the context of this work, we exploited its capabilities for
testing and performance assessment, alongside with real tests on
actual motes.

3) Border Router
In order to deploy a complete MQTT system, with WSN

nodes as clients and a broker running on Local Area Network
(LAN), 6lbr was used as a Border Router (BR), connecting the
6LoWPAN/IEEE 802.15.4 network to the local area IPv6
network. 6lbr [35] is an open source 6LoWPAN/RPL Border
Router deployment-ready solution based on the Contiki OS. It
can be deployed on low-cost, open source embedded hardware
platforms like the Raspberry Pi, BeagleBone or even to a PC
running Linux. 6lbr can be configured with different network
architectures (such as Bridge, Router or Transparent Bridge) and
has a variety of features such as: network auto-configuration,
synchronization of 6LoWPAN WSNs with IP network and an
enhanced webserver with configuration commands and
monitoring capabilities. Moreover, on its latest version it has full
IEEE 802.15.4 Security Layer support.

4) MQTT broker
Mosquitto [36] is an open source and cross-platform

message broker that implements the MQTT protocol versions
3.1 and 3.1.1. It also offers all the security features mentioned
on section II.C and thus it was used on the testbed of this work.

B. The Secure MQTT WSN Variants
The secure and lightweight MQTT client implementations

that were developed for this comparison are detailed below. All
implementations were built on top of the MQTT v3.1 library
included in Contiki OS. It must be noted that MQTT-SN [37],
i.e. a WSN-specific adaptation of MQTT, was not selected
because of it is not standardized yet and, moreover, it is not
interoperable with IP-based MQTT clients (additional gateways
would be needed); both important considerations in the context
of production, industrial environments. In terms of the
encryption mechanisms used, the focus was on choosing robust,
standardized and well-supported options for the target
platforms; a comparison of lightweight cryptographic primitives
is beyond the scope of this work and has been covered
extensively in the literature (e.g. [38]-[40]).

1) Option 1 – Payload encryption with AES
This first implementation ensures the security of the transferred
messages with the encryption of the payload on the MQTT
packet using symmetric key end-to-end (i.e. client-to-client)
encryption using the AES algorithm [41] with a 128-bit key.
Instead of using the Contiki’s built in AES implementation, a
Texas Instruments implementation in C language for the
MSP430 MCU [42] was used, as Contiki’s built in algorithm
implementation includes only the encryption function (i.e. no
decryption function), since it is only used for signing in the
CCM* implementation. This implementation encrypts messages
with only one block size length (the block size in AES is 16
bytes) and the message must be manually padded if it has smaller
length. Additionally, support for larger payload sizes was added
in the form of multiple consecutive encryptions/decryptions of
16 bytes, as it is done in the Electronic Codebook (ECB) mode
of operation. However, this mode was only developed for
performance testing and should not be used in a production
environment; identical blocks of plaintext produce equally
identical blocks of ciphertext, revealing information about the
plaintext, thus it is not secure.

2) Option 2 – Payload encryption with AES-CBC
This implementation is an extension of the previous one,

enabling the encryption of messages that have lengths larger
than one block size, with the use of AES in Cipher Block
Chaining (CBC) mode of operation. For this, the AES-CBC
implementation from ContikiSec [43] was used. It must be
highlighted that even though there is no specific limit on the
length of the messages to be encrypted, this implementation was
restricted to lengths up to four block sizes (i.e. 64 bytes) because
of the limited amount of RAM on the Z1 motes.

3) Option 3 – Payload authenticated encryption with AES-
OCB

The third implementation comes with an important addition
to the payload encryption; that is, authentication. In this
implementation, the AES in Offset Codebook (OCB)
authenticated encryption mode of operation was used in order to

furthermore ensure the integrity of the transferred messages. The
AES-OCB is the fastest authenticated encryption mode, and
some licensing restrictions that had hindered its wider use in the
past have been largely alleviated via the introduction of free
licenses for many uses [44]. Together with the encrypted
payload the tag is also appended on the message to be
transferred, and is used from the receiving MQTT client for
validation of the encrypted message. The implementation
available in the ContikiSec [43] library was used. Again, due to
the RAM limitation, the messages length was restricted to three
blocks.

4) Option 4 – Link layer encryption with AES-CCM*
For the last secure MQTT client implementation

investigated, a different approach was chosen, operating at a
lower layer. For this implementation, Link Layer encryption
(link layer security – LLSec) using AES-CCM* was used
instead of payload encryption, to act as a baseline of comparison
for the payload encryption methods detailed above. LLSec
ensures the node-to-node security of the whole transmitted
package (including the topic, the client id, etc.). LLSec is
included in the IEEE 802.15.4 specification. It must be noted
that a significant drawback of this approach is that it is limited
to hop-by-hop protection. In a WSN mesh topology, this could
consume motes resources as data must be decrypted and re-
encrypted at every hop. Moreover, if a group key is used (the
same key for all nodes), then all the nodes (including
compromised ones) will have access to the data.

C. Evaluation Environment & Configuration
Two different evaluation environments were configured and

used during that phase: i) a virtual environment and ii) a real-
world environment. In the first environment, all the WSN motes
programmed as MQTT clients were running inside the Cooja
simulator on virtual Zolertia Z1 motes and were connected to a
MQTT broker running on the VM’s localhost with the use of
Contiki’s Native Border Router. On the second environment, the
MQTT clients ran on real Zolertia Z1 motes connected to a
MQTT broker running on a Windows machine connected to the
LAN, with the use of 6lbr as Border Router that was configured
on a Raspberry Pi [45]. The first setup was used during code
development for testing and debugging purposes, whereas the
second setup was used for evaluating the implementations on
actual platforms. In the latter case, the motes were placed close
to each other, to eliminate possible transmission problems that
could affect the performance evaluation.

Fig. 1. Used testbed topology

Real-world Testbed
Internet IPv6 LAN

Mosquitto MQTT
broker

xDSL Modem/Router

Internet

LAN
802.15.4

Connection Legend

Wired
Wireless

OR

Web MQTT broker

6LBR – Border
Router

Slip Radio
(Zolertia Z1)

6LBR
(Raspberry Pi)

USB cable

802.15.4 Sensors

MQTT Publisher
Sensor/Encryption

(Zolertia Z1)

MQTT Subscriber
 Actuator/Decryption

(Zolertia Z1)

In terms of the Contiki configuration, the MAC layer driver
was set to the default (“nullmac_driver”), which is equivalent to
not having a MAC mechanism enabled. The Radio Duty Cycle
(RDC) layer driver was set to the “contikimac_driver”; an RDC
mechanism that tries to keep the radio transceiver off to save as
much energy as possible.

For use in the real-world testing environment, 6lbr was
installed and configured on a Raspberry Pi as a RPL. No changes
were done on the WSN network part configuration, whereas the
LAN was configured to use IPv6. The LAN was maintained by
an xDSL router with IPv6 Router Advertisement (RA) messages
support and unique local addressing (ULA) capabilities. A
Zolertia Z1 was programmed with the slip-radio code from 6lbr
and was connected via USB on the Raspberry Pi. Finally, the
Raspberry Pi was connected to the LAN trough Ethernet. The
testbed setup described above is depicted in Fig. 1.

IV. PERFORMANCE EVALUATION

A. Evaluation process
During the performance evaluation, two different motes

were used: A publisher, to emulate and IIoT Sensor, which
encrypted the data (i.e. sensed data) prior to publishing, and a
subscriber, to emulate an IIoT Actuator, which decrypted the
data (i.e. incoming commands) it received. To integrate both
functions and node types into the evaluation procedure, 50
MQTT messages were published from the Sensor (encrypted,
where needed) to a topic that the Actuator was subscribed to, and
the latter received said messages via the Broker (and decrypted
them, where needed).

The method to measure message latency, and more
specifically the time between publish (including the encryption,
if done) of a message and processing from the receiving end
(including decryption, if needed), depends on the testing
environment. While on the virtual testing environment, the
message latency can be easily measured, on the real-world
testing environment such measurement is not an easy task as it
requires clock synchronization between different sensors. To
overcome this an ACK publish message was used: after the
subscriber receives the message and decrypts it (if it is
encrypted), it performs a MQTT publish on another topic
(“clients/ack” for example) that the original publisher receives.
We refer to the total time (end-to-end time, as described above,
plus the time for the original sender/publisher to receive the
acknowledgment) as the round-trip time (RTT).

For measuring the Microcontroller Unit (MCU) and radio
power consumption, the Contiki tool Powertrace was used,
along with Energest (which uses wraparound macros to count
the number of CPU timer ticks in each power state; high and low
power CPU modes, radio RX and TX). Powertrace uses
Energest along with a periodic difference of the CPU timer ticks
to get average power over a shorter period of time, or for
particular network modes. More specifically, the energy
consumption and the radio duty cycle can be calculated using the
following two formulas:

 Energy = ()*+,*-._0123*	×	63++*).	×	072.1,*
89:;(8_<8=>_?(=@AB	×	9CD*_E3+1.C7)

 (1)

 Radio	duty	cycle	(%) = ()*+,*-._9R	S()*+,*-._8R
(A(8T(?9_=UV	S()*+,*-._WU;

 (2)

Where, on (1), “Energest_value” is the periodic value printed out
by Energest, “RTIMER_ARCH_SECOND” is the number of
ticks performed by the internal CPU timer per second (32768 in
this case) and finally and “Time_Duration” is the time in
seconds from the previous Energest measurement. On (2), the
“Energest_XX” is the corresponding value printed out by
Energest. The power specifications for our hardware platform
were obtained from the corresponding datasheet [32] as well as
from the detailed datasheet of the used MCU [46] in Zolertia
Z1s. For the power consumption calculation, the average rated
current for operation at 8MHz was calculated at 4.3 mA.

The total power consumption of a mote (as presented for
example in Fig. 4) is calculated by summing up the energy
consumption of the CPU, in normal mode as well as in Low
Power Mode (LPM), and the transceiver’s energy consumption,
in Receive (RX) and Transmit (TX) mode. All these individual
energy consumptions are calculated with the use of (2) and the
values printed out by Energest for every component.

B. Results & Discussion
The evaluation results from the real-world testbed are

presented in this section. The AES-OCB is the most resource
intensive option when it comes to encryption, as was of course
expected due to the security mechanism complexity, with the
AES-CBC to follow up second. As expected, LLSec does not
have as large a performance impact, as the CC2420 radio chip
used in Zolertia Z1 has hardware accelerated AES encryption
capabilities. The CPU load monitored on the motes followed the
same trend, but all options maintained relatively low CPU
utilization (e.g. 7.4% was the maximum value, for the 48-byte
AES-OCB encryption, compared to 4.1% for the equivalent
LLSec variant).

Fig. 2. Average rount trip time (RTT) in ms per encryption mechanism with
different payload sized in bytes.

The average message round-trip-times are depicted in Fig. 2;
indicatively, the RTT for a non-encrypted (plaintext) 32-byte
message exchange was recorder at 568.44ms. AES-OCB has the
largest RTT due to the added complexity of authenticated
encryption. LLSec also uses authenticated encryption (via AES-
CCM*), but there are two parameters that make it outperform
AES-OCB: i) security is established on the Link Layer which is,
generally, faster in comparison with security established on the
Application Layer, and ii) AES-CCM* is specially designed for
use over the 802.15.4 radio and leverages hardware acceleration

500

700

900

1100

1300

1500

1700

16 32 48 64

AES AES-CBC AES-OCB LLSec

on the radio chips. On the other hand, LLSec has a disadvantage
compared to Application-layer encryption (e.g. in comparison to
AES-CBC), in the sense that it provides node-to-node
encryption and as described in section III.B.4 this could have
impact on mote’s resources especially in the case of mesh
network topologies.

Fig. 3. RAM and ROM utilization, in bytes per encryption mechanism; the
motes’ hardware limits are at 8kB and 56kB, respectively.

Fig. 4. Total power consumption in mWatts for motes per encryption
mechanism with different payload sized in bytes

As expected, greater message payload sizes entail greater
round trip times due to both larger encryption/decryption time
but also larger packet trip time. However, in all cases AES-OCB
had the largest RTT, except when using AES-CBC with the
payload size of 64 bytes, while the AES-CBC had the best
latency-to-payload size ratio. When using the single block AES
in manual ECB mode (with consecutive
encryptions/decryption), it consumes the most power on almost
every case (i.e. 32 bytes and 48 bytes of payload, as seen on Fig.
4 and has the greater message latency (due to the continuous
encryptions/decryptions, as seen on Fig. 2) making it the less
suitable option. This behavior of the plain AES implementation
compared to AES-CBC and AES-OCB can be attributed to the
use of different implementations (i.e. libraries); as noted in
Section 3, the former is based on a TI implementation, while the
two latter are derived from the ContikiSec library.

V. DISCUSSION ON THE WIND PARK USE CASE –
CONCLUSIONS

In this work, different security options for MQTT-enabled
nodes were developed and evaluated on a real testbed, featuring
wireless sensors motes running the Contiki OS. The evaluated
options included three Application-layer implementations,
providing end-to-end security, and a Link Layer mechanism,
providing hop-by-hop protection. The 6lbr 6LoWPAN Border
Router and the Mosquitto MQTT broker were also used, to
create a complete IIoT MQTT-enabled testbed. A feature
comparison of different, standardized, IoT communication
protocols is included, and can be used as a compass for selecting
the right protocol according to the application’s needs.

Fig. 5. Typical Wind Turbine sensors and data networks

To accurately assess the evaluation results of the lightweight
MQTT security implementations in the context of industrial
applications, we focus on the characteristic use case of an
industrial wind park. In a wind park, multiple sensing devices
can be found that report sensing information periodically to the
backbend local SCADA servers. This information is used to
monitor and/or react on environmental or other operational
circumstances. The role of the sensing functionality is to read
data from a specific analog or digital sensor and transfer it to a
gateway device that will forward it to the backbend. The
connections are currently wired, but they are expected to be
replaced with wireless links in the future, as already investigated
in the context of industrial environments [47] and other critical
applications [48].

Thus, we analyzed traces from an actual, operational wind
park (in Brande, Denmark), for illustrating the specificities of
industrial traffic. The subject wind park consists of four wind
turbines connected in a redundant star topology. These turbines
themselves consist of two switches in series, one at the bottom,
and the other at the top. Connected to these switches are
numerous measurements systems, sensors and actuators which
communicate with a Supervisory Control and Data Acquisition
(SCADA) server also connected to the star topology. A router
then ensures the connection between the central switch and the
Internet. Fig. 5 shows typical networks (Ethernet and Profinet)
within a wind turbine. The Park Control System consists of two

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 6 3 2 4 8 6 4

Po
w
er
	(m

W
)

Payload	size	(B)

AES	(A) AES	(S)
AES-CBC	(A) AES-CBC	(S)
AES-OCB	(A) AES-OCB	(S)
LLSec	(A) LLSec	(S)

PLC

HUB

NACELLE
Gearbox	
(Optional) Generator

Switch

Prev.	Turbine	/	
SCADA

Next.	Turbine	/	
SCADA

Turbine	Controller
X86	running	QNX
Receives	and	Processes	
Control	commands

In	case	of	failure:
Law	fulfillments	may	not	be	covered
Turbine	operates	autonomously

STIC
Turbine	Interface	Controller

X86	with	storage	running	QNX
Local	sensor	data	storage	(ring	buffer)

I/O	gateway
Sensor/	Actuator
Ethernet
Profinet

Switch

main parts: The Wind Farm SCADA System (responsible for the
reporting, supervision, acquisition and storage of data from the
turbines) and the Wind Farm Grid Control System (responsible
for controlling the power output of the different wind turbines
and to adapt it to the grid operator requirements). In the context
of IIoT, the focus is on traces with traffic to/from the SCADA
server, which was captured for approximately 1000 seconds.
Analyzing the network traces, in conjunction with the
application requirements and how the wind parks currently
operate, helps better interpret the results in the context of the
actual specific application.

The traces contain many connections (around 20.0000), with
low data rates, including services such as Network Time
Protocol (NTP), Dynamic Host Configuration Protocol (DHCP)
and Simple Network Management Protocol (SNMP) exchanges,
which can be ignored in the context of IIoT wireless sensor
motes and their applications. The remaining traffic includes TCP
and UDP connections between the SCADA server and the wind
turbines. The TCP ones, though critical, only have end-to-end
requirements of 100 ms, 250 ms and 500 ms depending on the
specific service, while the latter (i.e. instantaneous single-packet
UDP exchanges) have a more stringent end-to-end delay
requirement of 10 ms. These numbers can be compared with the
end-to-end performance observed in this work, which is, on
average, half of the RTT time depicted in Fig. 2; the common
delays in the round-trip communications dominate the recorded
times, as the differences between encryption and decryption time
that differentiate the published message sent by the Sensor mote
from the acknowledgment sent by the Actuator mote are
minimal in comparison. Thus, the evaluated MQTT-based
secure Sensor and Actuator deployment, would be a viable
solution for the observed industrial applications requiring 250ms
(with some fine-tuning) and 500ms end-to-end response times,
but for the more time-critical ones requiring 100ms of end-to-
end response times encryption would probably have to be
dropped. For the even more stringent 10ms UDP connections, a
UDP-based IoT protocol, such as CoAP, could be a viable
alternative.

Moreover, it was observed that currently the wind turbines’
sensors are always directly connected (with a physical link) to
their respective gateways that aggregate their sensing data. Thus,
it is safe to assume that, when replaced with wireless sensors,
the nodes will still have direct contact (i.e. be in range) with their
gateways, and will not form a multi-hop network. In this context,
LLSec is the most suitable for securing the interactions of
MQTT-enabled sensors with the broker, as the performance
impact is relatively minimal (largely due to the hardware
acceleration already present in most radio chips); ignoring the
disadvantage of its hop-by-hop operation, as the communication
will be single-hop (sensor to gateway, or gateway to actuator).
Still, to provide a secure deployment, the communication of the
gateways with any backend systems should also be adequately
protected (e.g. via TLS). On the other hand, in cases where end-
to-end encryption is needed (e.g. to securely transfer data from
the sensor to the data historian, without having it exposed or
processed in-between), the AES-OCB payload encryption is an
attractive option: it offers the added security of authenticated
encryption, while incurring an acceptable processing overhead
compared to other encryption options (e.g. AES/CCM), and the

licensing restrictions that hindered its wider adoption in the past
have been largely alleviated. Still, if payload size is a limiting
factor (e.g. 64-byte payloads could not be processed by AES-
OCB due to resource restrictions of the target platforms), AES-
CBC could be used; nevertheless, wind park sensors, in specific,
do not have to handle as big payloads.

In future work, the performance of alternative security
mechanisms will be investigated and compared on the same
testbed (e.g. compressed IPsec [10][11]), along with the
integration of strong access control mechanisms [29][30] and
secure and trusted execution elements [49] into the IIoT
deployment. Moreover, the behavior of the platform in various
attack scenarios and corresponding mitigation techniques will be
assessed, as in [50]. Finally, the design and evaluation process
will be enhanced with the introduction of an actual wind park
sensing application, providing results in the setting of an
operational, production environment.

ACKNOWLEDGMENTS
This work has received funding from the European Union's

Horizon 2020 research and innovation programme VirtuWind
under grant agreement No. 671648, and from programme
CIPSEC under grant agreement No. 700378. The authors would
also like to thank the network engineers maintaining the subject
wind park for their valuable input in interpreting the network
traces and defining the application requirements.

REFERENCES
[1] S. C. Mukhopadhyay, “Internet of things: challenges and opportunities”,

vol. 9.; 9, pp. 1{7. Springer, 2014.
[2] D. Evans, “The Internet of Things: How the Next Evolution of the Internet

Is Changing Everything”, Cisco, April 2011.
[3] Bundesministerium für Bildung und Forschung, “Industrie 4.0,” Die

Hightech-Strategie für Deutschl., 2012. [Online]. Available:
http://www.hightech-strategie.de/de/59.php.

[4] L. Da Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”
IEEE Trans. Ind. Informatics, vol. 10, no. 4, pp. 2233–2243, Nov. 2014.

[5] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy
challenges in industrial internet of things,” in Proceedings of the 52nd
Annual Design Automation Conference on - DAC ’15, 2015, pp. 1–6.

[6] Cisco, “The Internet of Everything (IoE) Value Index,” 2013. [Online].
Available: http://www.cisco.com/web/about/ac79/docs/innov/IoE-Value-
Index_External.pdf.

[7] Accenture, “Igniting Growth in the Consumer Technology,” 2015.
[Online]. Available: https://www.accenture.com/_acnmedia/PDF-
3/Accenture-Igniting-Growth-in-Consumer-Technology.pdf.

[8] International Electrotechnical Commission. Internet of Things: Wireless
Sensor Networks. 2014. [Online]. Available:
http://www.iec.ch/whitepaper/pdf/iecWP-internetofthings-LR-en.pdf

[9] S. Kent and K. Seo, "Security Architecture for the Internet Protocol",
2005. [Online]. https://tools.ietf.org/html/rfc4301.

[10] K. Rantos, A. Papanikolaou, C. Manifavas and I. Papaefstathiou, “IPv6
Security for Low Power and Lossy Networks”, IEEE IFIP Wireless Days
(WD), 2013.

[11] S. Raza, T. Chung, S. Duquennoy, D. Yazar, T. Voigt and U. Roedig,
“Securing Internet of Things with Lightweight IPsec”, SICS Technical
Report, August 2010.

[12] A. Banks, R. Gupta, OASIS Message Queuing Telemetry Transport
(MQTT), version 3.1.1, OASIS. (2014) 1-81. [Online]. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf.

[13] T. Mahmoodi, V. Kulkarni, W. Kellerer, P. Mangan, F. Zeiger, S. Spirou,
I. Askoxylakis, X. Vilajosana, H. J. Einsiedler, and J. Quittek,
“VirtuWind: virtual and programmable industrial network prototype

deployed in operational wind park,” Trans. Emerg. Telecommun.
Technol., vol. 27, no. 9, pp. 1281–1288, 2016.

[14] D. Driscoll, A. Mensch, T. Nixon, and A. Regnier, “Devices profile for
web services, version 1.1,” OASIS, 2009. [Online]. Available:
http://docs.oasis-open.org/ws-dd/dpws/wsdd-dpws-1.1-spec.pdf.

[15] Z. Shelby, K. Hartke, and C. Bormann, "The constrained application
protocol (CoAP)", 2014. [Online]. https://tools.ietf.org/html/rfc7252.

[16] P. Saint-Andre, " Extensible Messaging and Presence Protocol (XMPP):
Core", 2011. [Online]. https://tools.ietf.org/html/rfc6120

[17] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate, “A Survey on Application Layer Protocols for the Internet of
Things,” Trans. IoT Cloud Comput., vol. 3, no. 1, pp. 11–17, 2015.

[18] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali,
“Comparison of two lightweight protocols for smartphone-based
sensing,” in 2013 IEEE 20th Symposium on Communications and
Vehicular Technology in the Benelux (SCVT), 2013, pp. 1–6.

[19] K. Fysarakis, I. Askoxylakis, C. Manifavas, O. Soultanos, I.
Papaefstathiou and V. Katos, “Which IoT protocol? Comparing
standarized approaches over a common M2M application”, in 2016 IEEE
Global Communications Conference (GLOBECOM 2016), 2016.

[20] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan,
“Performance evaluation of MQTT and CoAP via a common
middleware,” in 2014 IEEE Ninth International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), 2014,
pp. 1–6

[21] L. Durkop, B. Czybik, and J. Jasperneite, “Performance evaluation of
M2M protocols over cellular networks in a lab environment,” in 2015 18th
International Conference on Intelligence in Next Generation Networks,
2015, pp. 70–75.

[22] I. Skerrett, “IoT Developer Survey 2016”, Eclipse IoT Working Group,
IEEE IoT and Agile IoT, April 2016. [Online]. Available:
http://www.slideshare.net/IanSkerrett/iot-developer-survey-2016.

[23] A. Banks, R. Gupta, “OASIS Message Queuing Telemetry Transport
(MQTT), version 3.1.1”, OASIS, 2015. [Online]. Accessed: December
2015. Available: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-
v3.1.1.pdf.

[24] “ISO/IEC 20922 Information technology -- Message Queuing Telemetry
Transport (MQTT) v3.1.1”, ISO, 2016. [Online]. Available:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466.

[25] Y. F. Gomes, D. F. S. Santos, H. O. Almeida and A. Perkusich,
"Integrating MQTT and ISO/IEEE 11073 for health information sharing
in the Internet of Things," Consumer Electronics (ICCE), 2015 IEEE
International Conference on, Las Vegas, NV, 2015, pp. 200-201.

[26] P. Papageorgas, D. Piromalis, T. Iliopoulou, K. Agavanakis, M.
Barbarosou, K. Prekas, K. Antonakoglou, “Wireless Sensor Networking
Architecture of Polytropon: An Open Source Scalable Platform for the
Smart Grid”, Energy Procedia, Volume 50, Pages 270-276, 2014.

[27] Seong-Min Kim, Hoan-Suk Choi and Woo-Seop Rhee, "IoT home
gateway for auto-configuration and management of MQTT devices,"
Wireless Sensors (ICWiSe), 2015 IEEE Conference on, Melaka, 2015, pp.
12-17.

[28] J. E. Luzuriaga, J. C. Cano, C. Calafate, P. Manzoni, M. Perez and P.
Boronat, "Handling mobility in IoT applications using the MQTT
protocol," Internet Technologies and Applications (ITA), 2015,
Wrexham, 2015, pp. 245-250.

[29] K. Fysarakis, I. Papaefstathiou, C. Manifavas, K. Rantos, and O. Sultatos,
“Policy-based access control for DPWS-enabled ubiquitous devices,” in
Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA), 2014, pp. 1–8.

[30] K. Fysarakis, O. Soultatos, C. Manifavas, I. Papaefstathiou, and I.
Askoxylakis, “XSACd—Cross-domain resource sharing and access
control for smart environments,” Futur. Gener. Comput. Syst., 2016.

[31] Zolertia Z1 platform, Zolertia. [Online]. Available: http://zolertia.io/z1.
[32] Zolertia, “Zolertia Z1 Datasheet”. [Online]. Available:

http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf
[33] Contiki: The Open Source OS for the Internet of Things. [Online].

Available: http://www.contiki-os.org.

[34] J. Bregell, “Hardware and software platform for Internet of Things”,
Master of Science Thesis in Embedded Electronic System Design, 2015.

[35] 6lbr: A deployment-ready 6LoWPAN Border Router solution based on
Contiki. [Online]. Available: http://cetic.github.io/6lbr.

[36] Mosquitto Open Source MQTT v3.1/v3.1.1 Broker. [Online]. Available:
http://mosquitto.org.

[37] A. Stanford-Clark and H. L. Truong, “MQTT For Sensor Networks
(MQTT-SN): Protocol Specification, Version 1.2”, IBM, 2013. [Online].
Available: http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-
SN_spec_v1.2.pdf.

[38] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and K. Rantos, “Lightweight
Cryptography for Embedded Systems – A Comparative Analysis,” in 6th
Internations Workshop on Autonomous and Spontaneous Security
(SETOP 2013), vol. 8247, RHUL, Egham, U.K.: Springer-Verlag Berlin
Heidelberg, 2014, pp. 333–349.

[39] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and Y. Papaefstathiou, “A
survey of lightweight stream ciphers for embedded systems,” Security and
Communication Networks, vol. 9, no. 10. pp. 1226–1246, 2016.

[40] G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, and C. Manifavas, “A
review of lightweight block ciphers,” J. Cryptogr. Eng., Apr. 2017.

[41] "Announcing the ADVANCED ENCRYPTION STANDARD (AES)" .
Federal Information Processing Standards Publication 197. United States
National Institute of Standards and Technology (NIST). November 26,
2001. Retrieved October 2, 2012. [Online]. Available:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[42] U. Kretzschmar, “AES128 – A C Implementation for Encryption and
Decryption (Rev. A)”, Texas Instruments, 2009. [Online]. Available:
http://www.ti.com/mcu/docs/litabsmultiplefilelist.tsp?sectionId=96&tabI
d=1502&literatureNumber=slaa397a&docCategoryId=1&familyId=914.

[43] P. Tsigas and L. Casado, "ContikiSec: A Secure Network Layer for
Wireless Sensor Networks under the Contiki Operating System", 14th
Nordic Conference on Secure IT Systems, 2009. [Online]. Available:
http://www.cse.chalmers.se/research/group/dcs/masters/contikisec.

[44] OCB Free Licences, OCB Homepage. [Online]. Available:
http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm

[45] Raspberry Pi Model B datasheet, Raspberry Pi Foundation. [Online].
Available:
https://www.raspberrypi.org/documentation/hardware/computemodule/R
PI-CM-DATASHEET-V1_0.pdf.

[46] Texas Instruments, “MSP430F261x and MSP430F241x Mixed Signal
Microcontroller Datasheet”, November 2012. [Online]. Available:
http://www.ti.com/lit/ds/symlink/msp430f2417.pdf.

[47] M. R. Palattella, P. Thubert, X. Vilajosana, T. Watteyne, Q. Wang, and T.
Engel, “6TiSCH Wireless Industrial Networks: Determinism Meets
IPv6,” in Internet of Things: Challenges and Opportunities, S. C.
Mukhopadhyay, Ed. Cham: Springer International Publishing, 2014, pp.
111–141.

[48] R. N. Akram, K. Markantonakis, K. Mayes, P.-F. Bonnefoi, D. Sauveron,
and S. Chaumette, “An efficient, secure and trusted channel protocol for
avionics wireless networks,” in 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), 2016, pp. 1–10.

[49] C. Shepherd, G. Arfaoui, I. Gurulian, R. P. Lee, K. Markantonakis, R. N.
Akram, D. Sauveron, and E. Conchon, “Secure and Trusted Execution:
Past, Present, and Future - A Critical Review in the Context of the Internet
of Things and Cyber-Physical Systems,” in 2016 IEEE
Trustcom/BigDataSE/ISPA, 2016, pp. 168–177.

[50] N. E. Petroulakis, E. Z. Tragos, and I. G. Askoxylakis, “An experimental
investigation on energy consumption for secure life-logging in smart
environments,” in 2012 IEEE 17th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks
(CAMAD), 2012, pp. 292–29

