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Abstract—Massive advancements in computing and 
communication technologies have enabled the ubiquitous presence 
of interconnected computing devices in all aspects of modern life, 
forming what is typically referred to as the “Internet of Things”. 
These major changes could not leave the industrial environment 
unaffected, with “smart” industrial deployments gradually 
becoming a reality; a trend that is often referred to as the 4th 
industrial revolution or Industry 4.0. Nevertheless, the direct 
interaction of the smart devices with the physical world and their 
resource constraints, along with the strict performance, security, 
and reliability requirements of industrial infrastructures, 
necessitate the adoption of lightweight as well as secure 
communication mechanisms. Motivated by the above, this paper 
highlights the Message Queue Telemetry Transport (MQTT) as a 
lightweight protocol suitable for the industrial domain, presenting 
a comprehensive evaluation of different security mechanisms that 
could be used to protect the MQTT-enabled interactions on a real 
testbed of wireless sensor motes. Moreover, the applicability of the 
proposed solutions is assessed in the context of a real industrial 
application, analyzing the network characteristics and 
requirements of an actual, operating wind park, as a 
representative use case of industrial networks. 

Keywords—Industrial Internet of Things, IIoT, MQTT, 
information security, confidentiality, authentication, secure 
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I. INTRODUCTION 
Internet of Things (IoT) is a technological concept aiming at 

connecting all “smart things” to the Internet [1]. A recent 
research by Cisco estimated that the IoT will consist of almost 
50 billion objects by 2020 [2]. IoT has the potential to 
significantly enhance everyday lives, as it could be the enabler 
of anything from smart home and industrial automation to fully 
autonomous systems. The integration of the IoT into the 
industrial value chain, is referred to as “Industry 4.0”, or 
“Industrie 4.0”, from the German government initiative to 
promote the computerization of manufacturing that introduced 
the term [3]. The Industrial IoT (IIoT) is becoming a driver for 
innovation, promising reductions in capital expenditures 
(CAPEX) and operating expenses (OPEX), monitoring and 
optimizing several processes, regardless of their complexity, 
enabling innovative business models [4].  

Nevertheless, this new reality also introduces significant 
challenges in terms of implementing dynamic and secure 
discovery of resource-constrained devices and their resources 
[5]. Since all these devices will be connected to the Internet, 
security seems to be the one of the biggest concern of IoT [6] 
[7]. While some security aspects have already been solved on 
modern PCs and mobile devices, this is not the case for the 
devices that comprise the IIoT. Embedded devices, in their 

majority, have constrained resources that could not withstand the 
security implementations used on more powerful devices such 
as smartphones and tablets. A vital part of the IoT ecosystem are 
the wireless sensing nodes that form Wireless Sensor Networks 
(WSNs) and cooperatively sense and may control (through 
actuators), the surrounding environment, thus enabling the 
interaction between the cyber and the physical world [8].  In this 
class of devices widely-used protocols such as IPsec [9] protocol 
cannot be used because of their severe resource constraints 
motivating researchers to present lightweight variants [10][11].  

Closely linked to the security concerns are interoperability 
issues, as the current IoT landscape is one of a fragmented 
market, with lack of compatibility provisions. Various proposed 
“IoT protocols” aim to address such issues, whereas 
standardization initiatives try to guarantee interoperability, 
through the wide and structured deployment of the proposed 
mechanisms. Message Queue Telemetry Transport (MQTT) 
[12] is one such machine-to-machine (M2M)/"IIoT” 
connectivity protocol, recently standardized by OASIS. It was 
designed as an extremely lightweight publish/subscribe 
messaging transport, for small sensors and mobile devices, 
optimized for high-latency and/or unreliable networks. These 
characteristics were important in the protocol’s initial use case 
of monitoring oil pipelines on remote locations, where 
communications were at a premium. The same characteristics 
appear in the IoT era, justifying the revived interest in the 
protocol, leading to its recent standardization. 

Motivated by the above, this work presents a secure 
deployment of MQTT on Wireless Sensor Nodes, emulating an 
IIoT deployment, evaluating the performance of various security 
options on a real-world testbed. Moreover, the results of this 
evaluation are assessed in the context of an actual industrial 
network, highlighting the most viable options in the context of a 
real industrial application. Said assessment is based on a trace 
analysis conducted in an operating wind park’s network (in 
Brande, Denmark); a representative use case of industrial 
networks, studied in the context of the European project 
VirtuWind [13].  

The rest of paper is organized as follows: Section 2 presents 
the background in IoT protocols, then focusing on MQTT and 
the security mechanisms that could be employed to secure its 
deployments. Section 3 provides details on the key building 
blocks of the setup used to assess the various security 
mechanisms in the context of having a secure MQTT-enabled 
WSN environment, while Section 4 presents the method and 
results of the evaluation on said testbed. Finally, Section 5 
includes the concluding remarks and pointers to future work.  



II. TECHNICAL BACKGROUND 

A. IoT Communication Protocols 
Even though IoT research efforts in terms of standardization 

and interoperability are still under way, various protocols are 
already available.  Focusing on open source protocols, four 
approaches seem to have gained the most attention, both in 
research, but also in actual implementations for end users: 

• the MQTT protocol, mentioned above 
• the Devices Profile for Web Services (DPWS [14], also 

an OASIS standard); a service-oriented approach on 
embedded and sensor devices with limited resources  

• the Constrained Application Protocol (CoAP [15], an 
IETF standard); a specialized web transfer protocol for 
use with constrained nodes and constrained networks  

• the Extensible Messaging and Presence Protocol 
(XMPP [16], also an IETF standard); a communication 
protocol for message-oriented middleware.  

A characteristics comparison of the above protocols is 
presented in TABLE I. Many theoretical and feature-by-feature 
comparisons of ΙοΤ protocols are available in the literature, 
whereas some power efficiency and performance evaluations of 
real implementations can be found as well. A high-level survey 
of IoT protocols can be found in [17], although DPWS is not 
included. Another comparison between CoAP and MQTT, in the 
context of a smartphone-based application, can be found in [18]. 
Additionally, a direct comparison of DPWS, CoAP and MQTT 
can be found in [19]. In [20] a comparison of, MQTT and CoAP, 
assessing protocols’ behavior in changing network conditions is 
available. Finally, in [21] , another lab-based comparison of 
CoAP, MQTT and OPC-UA, in the context of communications 
over cellular networks is presented. However, a comprehensive 
performance and power evaluation of different security 
mechanisms on MQTT-enabled wireless motes is missing from 
the literature, to the best of our knowledge. 

MQTT offers some significant advantages that make it 
standout for IIoT applications. The Quality of Service (QoS) 
options of MQTT are unique amongst IoT protocols; an 
important feature on unreliable networks transferring critical 
information. On top of that, it is TCP based on instead of the 
unreliable UDP transport protocol. Moreover, its message sizes 
are very small, with a fixed header overhead of just 4 bytes, 
second only to CoAP (which has 2 bytes of fixed header size) 
whereas XMPP and DPWS messages follow XML structures 
and incur significant overheads to message sizes. Finally, 
MQTT is the second most popular IoT messaging protocol used 
today by IoT, according to [22], (only preceded by HTTP, which 
is not applicable to resource-constrained devices nor lightweight 
communications that are the focus of this work). A disadvantage 
of MQTT is that does not have discovery capabilities. This is not 
a problem in the context of wireless sensors, because most of the 
IIoT scenarios assume that all the nodes’ properties are already 
known or easily discoverable from the respective edge router. 
The other drawback of MQTT is that it is not a synchronous 
communication protocol. This is of no significance in the 
context of IIoT sensors which periodically report sensed data at 
a gateway, as there is no special need for synchronous 
communications between these nodes, but may be an issue when 

communicating with IIoT actuators in some scenarios (which 
can be overcome using more complex interactions; e.g. 
publishing to a topic that is relayed to the subscribed actuators, 
which in turn forces them to trigger an action). 

TABLE I.  FEATURE COMPARISON OF THE MAIN IOT PROTOCOLS 

 DPWS XMPP COAP MQTT 

Version 1.1, OASIS RFC 6120, 
IETF 

RFC 7252, 
IETF 

3.1.1, OASIS, 
ISO/IEC 

20922/2016 
Protocol 

Type 
Service 

Oriented 
Message 
Oriented 

Resource 
Oriented 

Message 
Oriented 

Transport TCP & UDP TCP 
UDP 
(TCP 

planned) 
TCP 

Synchronous 
Yes 

(Service 
Invocation) 

Near-real time 

Yes 
(Request/resp

onse, via 
HTTP) 

No 

Asynchronous 

Publish/Subsc
ribe to Service 

- WS-
Eventing 

Publish/Subsc
ribe 

Observe 
Resource - 
RFC 7641 

Publish/Subsc
ribe to Topic 

Discovery WS-
Discovery XEP-0030 RFC 5785 / 

RFC 6990 No 

QoS Not integrated Not integrated Elementary 
support Yes (3 modes) 

Security 

Payload 
encryption, 

WS-Security, 
TLS, IPSec, 

802.15.4 

SASL, 
TLS, 

Non-native 
end-to-end 
encryption 

Payload 
encryption, 

DTLS, 
IPSec, 

802.15.4 

Payload 
encryption, 

TLS, 
IPSec, 

802.15.4 

B. The MQTT Protocol 
MQTT is an IoT connectivity protocol that runs on top of the 

TCP protocol. It was developed by IBM for lightweight M2M 
communications. In 2014, the MQTT version 3.1.1 was also 
approved [23] as an OASIS standard, while it is also 
standardized as ISO/IEC 20922 [24]. It is a message-oriented 
protocol, that implements a publish/subscribe interaction model 
where the client devices do not need to impulsively request for 
updates; thus, reducing the drain of nodes resources, and making 
it optimal for use on high-latency or/and unreliable networks. 
The MQTT protocol follows the server/client schema with the 
server referred to as the broker. The clients do not communicate 
directly with each other and all the messages travel through the 
broker. Every message has a topic and each client can subscribe 
to various topics. Topics are organized in a hierarchical manner 
(called topic levels), with the form of file paths such as in a 
computer’s file system; e.g. “home/bedroom/light/status”. The 
broker receives the publish messages from a client and is then 
responsible for relaying them to every other client that is 
subscribed to this topic. It is easy to understand that MQTT was 
designed for one-to-many and many-to-many asynchronous 
communications. Provided that there is a pre-defined 
relationship between participating nodes, there is no need for 
discovery or content negotiation mechanisms in the protocol. 
MQTT focuses on reliable messaging, therefore it includes 
message buffers and Quality of Service (QoS) levels controlled 
by the broker: i) level 0 – at most once (or better described as 
“fire and forget”), ii) level 1 – at least once (or “deliver at least 
once”) and iii) level 2 – exactly once (or “deliver exactly once”). 
The assurance of the QoS levels greater than zero is achieved 



with the use of ACK (acknowledge) packets between the 
publisher and the broker. 

Despite being only recently standardized, researchers have 
already studied MQTT in a variety of domains, including 
eHealth applications [25], WSNs and smart grid [26], smart 
homes [27] and also mobile IoT contexts [28], among others. 

C. MQTT Security 
MQTT features various security options in terms 

authentication, authorization and data confidentiality. For 
authentication, it provides a simple authentication scheme 
through username and password fields in the connection 
initiation packet that a client can use to connect the broker, 
although authenticating credentials are sent in plaintext and 
some form of encryption should be used. An additional 
authentication scheme is by the use of the unique client identifier 
that every MQTT client registers at the broker at connection 
time. The client id can be up to 65535 characters and it is 
commonly given the value of the MAC address of the device or 
it’s serial number. 

Authorization in MQTT can be achieved using an Access 
Control List (ACL) on the broker side. The ACL contains 
permissions for users or system processes to grant access to 
objects, as well the allowed operations on given objects. MQTT 
ACL contains all the pairs of usernames and passwords and the 
topics a client have publish and/or subscribe access. Enhanced 
authorization features can be implemented on the broker with 
the form of plugins, or with the form of an extra web service. 
More sophisticated access control schemes can also be 
integrated into MQTT [29][30]. 

Regarding the confidentiality of MQTT messages, this can 
be achieved at the Application layer via the use of payload 
encryption. For this encryption, any of the available encryption 
or authenticated encryption algorithms can be used, provided 
that there is support for the target devices. Furthermore, 
encryption can be implemented either as end-to-end (encrypted 
on the publisher’s device and is decrypted on every subscriber 
that has the right key) or just client-to-broker. In the former case, 
the broker may have no knowledge of the decryption key, and 
thus no access to the payload’s content (i.e. messages can be sent 
even over untrusted brokers). On the second case, the payload of 
the message is only encrypted between a node and the broker. 
This approach requires a custom-developed broker plugin that 
will decrypt the encrypted data on the broker side, and could be 
used in scenarios where only part of the MQTT deployment is 
to be protected (e.g. subscribers are already connected with a 
secure connection to the broker, thus we only need to protect the 
publishing nodes). 

Nevertheless, security mechanisms could also be adopted at 
lower layers. For example, a reliable way to achieve secure 
communication on the Transport layer is TLS (for TCP) or 
DTLS (for UDP). As MQTT uses TCP, the focus is on the 
former, but TLS is not applicable for devices with severe 
resource limitations, such as the wireless sensor nodes that are 
the focus of this work.  

Moving to a lower layer of the network stack, a common way 
to secure communications is the use of link layer encryption. 
Link layer encryption can be achieved with the use of many 

different encryption or authenticated encryption algorithms such 
as AES-CBC-MAC, AES-CTR, or AES-CCM*. This kind of 
security has some strong advantages such as greater efficiency 
considering the hardware acceleration support found on many 
modern radio chips. 

In the context of this work, we will focus on the two most 
viable security approaches for MQTT on WSN deployments, 
namely how different variants of payload encryption compare to 
the use of encryption at the link layer. 

III. TESTBED SETUP 
This section provides details on the building blocks used to 

produce an MQTT-enabled WSN testbed for comparing the 
various security options that could be used alongside said 
protocol. 

A. Platforms 
1) WSN Mote 

The IoT features a variety of heterogeneous platforms, 
ranging from ultra-low power and limited resources motes (such 
as Zolertia Z1 and ReMote, Wismote, Skymote), to medium 
power platforms (such as Arduino), or even more powerful 
computing devices (such as the Raspberry Pi). For the WSN 
testbed in this work, the Zolertia Z1 [31] was chosen; a 
development platform that builds upon the ultra-low power 16bit 
16 MHz MSP430 RISC MCU [32]. The communication is 
managed by the Texas Instruments CC2420 radio transceiver 
which operates in the 2.4 GHz band. It is equipped with 8kB of 
RAM and a 92kB Flash memory, although only 56kB are usable 
without using the proper configuration. It also has a very well-
established support on many open source operating systems. 
Finally, the board can be powered from either a battery or the 
USB connection. 

2) Lightweight Operating System for the IoT 
Contiki OS [33] is an open source and community supported 

operating system designed for use in IoT, offering low memory 
footprint, power management and soft real-time [34]. Built into 
Contiki the Cooja Network Simulator, is a simulation 
environment that allows developers simulate applications 
running in large-scale networks and on fully emulated devices. 
In the context of this work, we exploited its capabilities for 
testing and performance assessment, alongside with real tests on 
actual motes. 

3) Border Router 
In order to deploy a complete MQTT system, with WSN 

nodes as clients and a broker running on Local Area Network 
(LAN), 6lbr was used as a Border Router (BR), connecting the 
6LoWPAN/IEEE 802.15.4 network to the local area IPv6 
network. 6lbr [35] is an open source 6LoWPAN/RPL Border 
Router deployment-ready solution based on the Contiki OS. It 
can be deployed on low-cost, open source embedded hardware 
platforms like the Raspberry Pi, BeagleBone or even to a PC 
running Linux. 6lbr can be configured with different network 
architectures (such as Bridge, Router or Transparent Bridge) and 
has a variety of features such as: network auto-configuration, 
synchronization of 6LoWPAN WSNs with IP network and an 
enhanced webserver with configuration commands and 
monitoring capabilities. Moreover, on its latest version it has full 
IEEE 802.15.4 Security Layer support. 



4) MQTT broker 
Mosquitto [36] is an open source and cross-platform 

message broker that implements the MQTT protocol versions 
3.1 and 3.1.1. It also offers all the security features mentioned 
on section II.C and thus it was used on the testbed of this work. 

B. The Secure MQTT WSN Variants 
The secure and lightweight MQTT client implementations 

that were developed for this comparison are detailed below. All 
implementations were built on top of the MQTT v3.1 library 
included in Contiki OS. It must be noted that MQTT-SN [37], 
i.e. a WSN-specific adaptation of MQTT, was not selected 
because of it is not standardized yet and, moreover, it is not 
interoperable with IP-based MQTT clients (additional gateways 
would be needed); both important considerations in the context 
of production, industrial environments. In terms of the 
encryption mechanisms used, the focus was on choosing robust, 
standardized and well-supported options for the target 
platforms; a comparison of lightweight cryptographic primitives 
is beyond the scope of this work and has been covered 
extensively in the literature (e.g. [38]-[40]). 

1) Option 1 – Payload encryption with AES 
This first implementation ensures the security of the transferred 
messages with the encryption of the payload on the MQTT 
packet using symmetric key end-to-end (i.e. client-to-client) 
encryption using the AES algorithm [41] with a 128-bit key. 
Instead of using the Contiki’s built in AES implementation, a 
Texas Instruments implementation in C language for the 
MSP430 MCU [42] was used, as Contiki’s built in algorithm 
implementation includes only the encryption function (i.e. no 
decryption function), since it is only used for signing in the 
CCM* implementation. This implementation encrypts messages 
with only one block size length (the block size in AES is 16 
bytes) and the message must be manually padded if it has smaller 
length. Additionally, support for larger payload sizes was added 
in the form of multiple consecutive encryptions/decryptions of 
16 bytes, as it is done in the Electronic Codebook (ECB) mode 
of operation. However, this mode was only developed for 
performance testing and should not be used in a production 
environment; identical blocks of plaintext produce equally 
identical blocks of ciphertext, revealing information about the 
plaintext, thus it is not secure. 

2) Option 2 – Payload encryption with AES-CBC 
This implementation is an extension of the previous one, 

enabling the encryption of messages that have lengths larger 
than one block size, with the use of AES in Cipher Block 
Chaining (CBC) mode of operation. For this, the AES-CBC 
implementation from ContikiSec [43] was used. It must be 
highlighted that even though there is no specific limit on the 
length of the messages to be encrypted, this implementation was 
restricted to lengths up to four block sizes (i.e. 64 bytes) because 
of the limited amount of RAM on the Z1 motes. 

3) Option 3 – Payload authenticated encryption with AES-
OCB 

The third implementation comes with an important addition 
to the payload encryption; that is, authentication. In this 
implementation, the AES in Offset Codebook (OCB) 
authenticated encryption mode of operation was used in order to 

furthermore ensure the integrity of the transferred messages. The 
AES-OCB is the fastest authenticated encryption mode, and 
some licensing restrictions that had hindered its wider use in the 
past have been largely alleviated via the introduction of free 
licenses for many uses [44]. Together with the encrypted 
payload the tag is also appended on the message to be 
transferred, and is used from the receiving MQTT client for 
validation of the encrypted message. The implementation 
available in the ContikiSec [43] library was used. Again, due to 
the RAM limitation, the messages length was restricted to three 
blocks. 

4) Option 4 – Link layer encryption with AES-CCM* 
For the last secure MQTT client implementation 

investigated, a different approach was chosen, operating at a 
lower layer. For this implementation, Link Layer encryption 
(link layer security – LLSec) using AES-CCM* was used 
instead of payload encryption, to act as a baseline of comparison 
for the payload encryption methods detailed above. LLSec 
ensures the node-to-node security of the whole transmitted 
package (including the topic, the client id, etc.). LLSec is 
included in the IEEE 802.15.4 specification. It must be noted 
that a significant drawback of this approach is that it is limited 
to hop-by-hop protection. In a WSN mesh topology, this could 
consume motes resources as data must be decrypted and re-
encrypted at every hop. Moreover, if a group key is used (the 
same key for all nodes), then all the nodes (including 
compromised ones) will have access to the data.  

C. Evaluation Environment & Configuration 
Two different evaluation environments were configured and 

used during that phase: i) a virtual environment and ii) a real-
world environment. In the first environment, all the WSN motes 
programmed as MQTT clients were running inside the Cooja 
simulator on virtual Zolertia Z1 motes and were connected to a 
MQTT broker running on the VM’s localhost with the use of 
Contiki’s Native Border Router. On the second environment, the 
MQTT clients ran on real Zolertia Z1 motes connected to a 
MQTT broker running on a Windows machine connected to the 
LAN, with the use of 6lbr as Border Router that was configured 
on a Raspberry Pi [45]. The first setup was used during code 
development for testing and debugging purposes, whereas the 
second setup was used for evaluating the implementations on 
actual platforms. In the latter case, the motes were placed close 
to each other, to eliminate possible transmission problems that 
could affect the performance evaluation. 

 
Fig. 1. Used testbed topology  
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In terms of the Contiki configuration, the MAC layer driver 
was set to the default (“nullmac_driver”), which is equivalent to 
not having a MAC mechanism enabled. The Radio Duty Cycle 
(RDC) layer driver was set to the “contikimac_driver”; an RDC 
mechanism that tries to keep the radio transceiver off to save as 
much energy as possible.  

For use in the real-world testing environment, 6lbr was 
installed and configured on a Raspberry Pi as a RPL. No changes 
were done on the WSN network part configuration, whereas the 
LAN was configured to use IPv6. The LAN was maintained by 
an xDSL router with IPv6 Router Advertisement (RA) messages 
support and unique local addressing (ULA) capabilities. A 
Zolertia Z1 was programmed with the slip-radio code from 6lbr 
and was connected via USB on the Raspberry Pi. Finally, the 
Raspberry Pi was connected to the LAN trough Ethernet. The 
testbed setup described above is depicted in Fig. 1. 

IV. PERFORMANCE EVALUATION 

A. Evaluation process 
During the performance evaluation, two different motes 

were used: A publisher, to emulate and IIoT Sensor, which 
encrypted the data (i.e. sensed data) prior to publishing, and a 
subscriber, to emulate an IIoT Actuator, which decrypted the 
data (i.e. incoming commands) it received. To integrate both 
functions and node types into the evaluation procedure, 50 
MQTT messages were published from the Sensor (encrypted, 
where needed) to a topic that the Actuator was subscribed to, and 
the latter received said messages via the Broker (and decrypted 
them, where needed). 

The method to measure message latency, and more 
specifically the time between publish (including the encryption, 
if done) of a message and processing from the receiving end 
(including decryption, if needed), depends on the testing 
environment. While on the virtual testing environment, the 
message latency can be easily measured, on the real-world 
testing environment such measurement is not an easy task as it 
requires clock synchronization between different sensors. To 
overcome this an ACK publish message was used: after the 
subscriber receives the message and decrypts it (if it is 
encrypted), it performs a MQTT publish on another topic 
(“clients/ack” for example) that the original publisher receives. 
We refer to the total time (end-to-end time, as described above, 
plus the time for the original sender/publisher to receive the 
acknowledgment) as the round-trip time (RTT).  

For measuring the Microcontroller Unit (MCU) and radio 
power consumption, the Contiki tool Powertrace was used, 
along with Energest (which uses wraparound macros to count 
the number of CPU timer ticks in each power state; high and low 
power CPU modes, radio RX and TX). Powertrace uses 
Energest along with a periodic difference of the CPU timer ticks 
to get average power over a shorter period of time, or for 
particular network modes. More specifically, the energy 
consumption and the radio duty cycle can be calculated using the 
following two formulas: 

  Energy = ()*+,*-._0123*	×	63++*).	×	072.1,*
89:;(8_<8=>_?(=@AB	×	9CD*_E3+1.C7)

  (1) 

  Radio	duty	cycle	(%) = ()*+,*-._9R	S()*+,*-._8R
(A(8T(?9_=UV	S()*+,*-._WU;

  (2) 

Where, on (1), “Energest_value” is the periodic value printed out 
by Energest, “RTIMER_ARCH_SECOND” is the number of 
ticks performed by the internal CPU timer per second (32768 in 
this case) and finally and “Time_Duration” is the time in 
seconds from the previous Energest measurement. On (2), the 
“Energest_XX” is the corresponding value printed out by 
Energest. The power specifications for our hardware platform 
were obtained from the corresponding datasheet [32] as well as 
from the detailed datasheet of the used MCU [46] in Zolertia 
Z1s. For the power consumption calculation, the average rated 
current for operation at 8MHz was calculated at 4.3 mA.  

The total power consumption of a mote (as presented for 
example in Fig. 4) is calculated by summing up the energy 
consumption of the CPU, in normal mode as well as in Low 
Power Mode (LPM), and the transceiver’s energy consumption, 
in Receive (RX) and Transmit (TX) mode. All these individual 
energy consumptions are calculated with the use of (2) and the 
values printed out by Energest for every component. 

B. Results & Discussion  
The evaluation results from the real-world testbed are 

presented in this section. The AES-OCB is the most resource 
intensive option when it comes to encryption, as was of course 
expected due to the security mechanism complexity, with the 
AES-CBC to follow up second. As expected, LLSec does not 
have as large a performance impact, as the CC2420 radio chip 
used in Zolertia Z1 has hardware accelerated AES encryption 
capabilities. The CPU load monitored on the motes followed the 
same trend, but all options maintained relatively low CPU 
utilization (e.g. 7.4% was the maximum value, for the 48-byte 
AES-OCB encryption, compared to 4.1% for the equivalent 
LLSec variant). 

 
Fig. 2. Average rount trip time (RTT) in ms per encryption mechanism with 
different payload sized in bytes. 

The average message round-trip-times are depicted in Fig. 2; 
indicatively, the RTT for a non-encrypted (plaintext) 32-byte 
message exchange was recorder at 568.44ms. AES-OCB has the 
largest RTT due to the added complexity of authenticated 
encryption. LLSec also uses authenticated encryption (via AES-
CCM*), but there are two parameters that make it outperform 
AES-OCB: i) security is established on the Link Layer which is, 
generally, faster in comparison with security established on the 
Application Layer, and ii) AES-CCM* is specially designed for 
use over the 802.15.4 radio and leverages hardware acceleration 
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on the radio chips. On the other hand, LLSec has a disadvantage 
compared to Application-layer encryption (e.g. in comparison to 
AES-CBC), in the sense that it provides node-to-node 
encryption and as described in section III.B.4 this could have 
impact on mote’s resources especially in the case of mesh 
network topologies. 

 
Fig. 3. RAM and ROM utilization, in bytes per encryption mechanism; the 
motes’ hardware limits are at 8kB and 56kB, respectively. 

 

Fig. 4. Total power consumption in mWatts for motes per encryption 
mechanism with different payload sized in bytes 

As expected, greater message payload sizes entail greater 
round trip times due to both larger encryption/decryption time 
but also larger packet trip time. However, in all cases AES-OCB 
had the largest RTT, except when using AES-CBC with the 
payload size of 64 bytes, while the AES-CBC had the best 
latency-to-payload size ratio. When using the single block AES 
in manual ECB mode (with consecutive 
encryptions/decryption), it consumes the most power on almost 
every case (i.e. 32 bytes and 48 bytes of payload, as seen on Fig. 
4 and has the greater message latency (due to the continuous 
encryptions/decryptions, as seen on Fig. 2) making it the less 
suitable option. This behavior of the plain AES implementation 
compared to AES-CBC and AES-OCB can be attributed to the 
use of different implementations (i.e. libraries); as noted in 
Section 3, the former is based on a TI implementation, while the 
two latter are derived from the ContikiSec library. 

V. DISCUSSION ON THE WIND PARK USE CASE – 
CONCLUSIONS 

In this work, different security options for MQTT-enabled 
nodes were developed and evaluated on a real testbed, featuring 
wireless sensors motes running the Contiki OS. The evaluated 
options included three Application-layer implementations, 
providing end-to-end security, and a Link Layer mechanism, 
providing hop-by-hop protection. The 6lbr 6LoWPAN Border 
Router and the Mosquitto MQTT broker were also used, to 
create a complete IIoT MQTT-enabled testbed. A feature 
comparison of different, standardized, IoT communication 
protocols is included, and can be used as a compass for selecting 
the right protocol according to the application’s needs. 

 
Fig. 5. Typical Wind Turbine sensors and data networks  

To accurately assess the evaluation results of the lightweight 
MQTT security implementations in the context of industrial 
applications, we focus on the characteristic use case of an 
industrial wind park. In a wind park, multiple sensing devices 
can be found that report sensing information periodically to the 
backbend local SCADA servers. This information is used to 
monitor and/or react on environmental or other operational 
circumstances. The role of the sensing functionality is to read 
data from a specific analog or digital sensor and transfer it to a 
gateway device that will forward it to the backbend. The 
connections are currently wired, but they are expected to be 
replaced with wireless links in the future, as already investigated 
in the context of industrial environments [47] and other critical 
applications [48].  

Thus, we analyzed traces from an actual, operational wind 
park (in Brande, Denmark), for illustrating the specificities of 
industrial traffic. The subject wind park consists of four wind 
turbines connected in a redundant star topology. These turbines 
themselves consist of two switches in series, one at the bottom, 
and the other at the top. Connected to these switches are 
numerous measurements systems, sensors and actuators which 
communicate with a Supervisory Control and Data Acquisition 
(SCADA) server also connected to the star topology. A router 
then ensures the connection between the central switch and the 
Internet. Fig. 5 shows typical networks (Ethernet and Profinet) 
within a wind turbine. The Park Control System consists of two 
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main parts: The Wind Farm SCADA System (responsible for the 
reporting, supervision, acquisition and storage of data from the 
turbines) and the Wind Farm Grid Control System (responsible 
for controlling the power output of the different wind turbines 
and to adapt it to the grid operator requirements). In the context 
of IIoT, the focus is on traces with traffic to/from the SCADA 
server, which was captured for approximately 1000 seconds. 
Analyzing the network traces, in conjunction with the 
application requirements and how the wind parks currently 
operate, helps better interpret the results in the context of the 
actual specific application.  

The traces contain many connections (around 20.0000), with 
low data rates, including services such as Network Time 
Protocol (NTP), Dynamic Host Configuration Protocol (DHCP) 
and Simple Network Management Protocol (SNMP) exchanges, 
which can be ignored in the context of IIoT wireless sensor 
motes and their applications. The remaining traffic includes TCP 
and UDP connections between the SCADA server and the wind 
turbines. The TCP ones, though critical, only have end-to-end 
requirements of 100 ms, 250 ms and 500 ms depending on the 
specific service, while the latter (i.e. instantaneous single-packet 
UDP exchanges) have a more stringent end-to-end delay 
requirement of 10 ms. These numbers can be compared with the 
end-to-end performance observed in this work, which is, on 
average, half of the RTT time depicted in Fig. 2; the common 
delays in the round-trip communications dominate the recorded 
times, as the differences between encryption and decryption time 
that differentiate the published message sent by the Sensor mote 
from the acknowledgment sent by the Actuator mote are 
minimal in comparison. Thus, the evaluated MQTT-based 
secure Sensor and Actuator deployment, would be a viable 
solution for the observed industrial applications requiring 250ms 
(with some fine-tuning) and 500ms end-to-end response times, 
but for the more time-critical ones requiring 100ms of end-to-
end response times encryption would probably have to be 
dropped. For the even more stringent 10ms UDP connections, a 
UDP-based IoT protocol, such as CoAP, could be a viable 
alternative. 

Moreover, it was observed that currently the wind turbines’ 
sensors are always directly connected (with a physical link) to 
their respective gateways that aggregate their sensing data. Thus, 
it is safe to assume that, when replaced with wireless sensors, 
the nodes will still have direct contact (i.e. be in range) with their 
gateways, and will not form a multi-hop network. In this context, 
LLSec is the most suitable for securing the interactions of 
MQTT-enabled sensors with the broker, as the performance 
impact is relatively minimal (largely due to the hardware 
acceleration already present in most radio chips); ignoring the 
disadvantage of its hop-by-hop operation, as the communication 
will be single-hop (sensor to gateway, or gateway to actuator). 
Still, to provide a secure deployment, the communication of the 
gateways with any backend systems should also be adequately 
protected (e.g. via TLS). On the other hand, in cases where end-
to-end encryption is needed (e.g. to securely transfer data from 
the sensor to the data historian, without having it exposed or 
processed in-between), the AES-OCB payload encryption is an 
attractive option: it offers the added security of authenticated 
encryption, while incurring an acceptable processing overhead 
compared to other encryption options (e.g. AES/CCM), and the 

licensing restrictions that hindered its wider adoption in the past 
have been largely alleviated. Still, if payload size is a limiting 
factor (e.g. 64-byte payloads could not be processed by AES-
OCB due to resource restrictions of the target platforms), AES-
CBC could be used; nevertheless, wind park sensors, in specific, 
do not have to handle as big payloads. 

In future work, the performance of alternative security 
mechanisms will be investigated and compared on the same 
testbed (e.g. compressed IPsec [10][11]), along with the 
integration of strong access control mechanisms [29][30] and 
secure and trusted execution elements [49] into the IIoT 
deployment. Moreover, the behavior of the platform in various 
attack scenarios and corresponding mitigation techniques will be 
assessed, as in [50]. Finally, the design and evaluation process 
will be enhanced with the introduction of an actual wind park 
sensing application, providing results in the setting of an 
operational, production environment. 
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